Modeling the Urban Energy Balance

<earthobservatory.nasa.gov>

Anders Nottrott

University of California, San Diego
Department of Mechanical and Aerospace Engineering

The Urban Heat Island (UHI) Effect

Factors Contributing to UHI Formation

Urban Energy Balance Equation

$$R_{net} + Q_A = Q_H + Q_E + Q_G + Q_S$$

- Reduction in latent cooling (e.g. vegetation non-permeable surfaces)
- Increased surface temperatures (e.g. low albedo, high heat capacity)
- Anthropogenic heat (e.g. cars, HVAC, people etc.)

Why should we care about UHIs?

- Electricity demand increases about 2-4% for every 1°C rise in air temperature
 - U.S. building electricity use \$613 billion in 2006 dollars
- Mortality increases during heat waves
 - 1995 extreme heat wave in Chicago, Illinois resulted in 700 heat related death
- Production of some green house gasses increases with temperature (e.g. smog => ozone)

Why should we care about UHIs?

<southwestclimatechange.org>

What can/should we do about UHIs?

 UHI mitigation accomplished by Green Design and Engineering

<scholtensroofing.com>

<nissan.com>

diquidroof.net>

<malamamaunalua.org>

Holistic Urban Energy Models

- Coupled conduction, radiation and fluid mechanics models (CFD) with meteorological and materials data in geometrically complex urban domains
- Necessary to evaluate complex feedbacks resulting urban design strategies
 - e.g. "white roads"

Large Eddy Simulation (LES)

- Powerful approach to model turbulent fluid motions over large spatial domains of O(km)
- Deterministically solve the Navier-Stokes equations for large scales of turbulence O(m)
- Apply a Sub-grid Scale model for fine scales of turbulence O(cm)
- Computationally cheaper than direct numerical simulation (DNS)

Large Eddy Simulation (LES)

LES of wind speed contours – Shinjuku Ward, Tokyo, Japan (PALM; Raasch and Schroter, 2001)

Red = High speed fluid Blue = Low speed fluid

Kanda Laboratory, Tokyo Institute of Technology (2005)

What about the wall?

- Near wall heat and mass transport cannot be resolved using LES because the energycontaining scales become much smaller than the grid size O(cm) to O(mm)
- Specialized models called wall functions are necessary to estimate the convective surface fluxes

Measurement of wall turbulence

 Comprehensive Outdoor Scale Model (COSMO) for urban atmospheric studies

Pyranometer

Sonic Anemometers

Fine-wire
Thermocouple
Rakes
(32 sensors)

Characterization of wall boundary layer

--- ~ 6 cm from the wall

Characterization of wall boundary layer

Average boundary layer profiles are consistent with natural convection

Black = Data from previous studies (adapted from Tsuji & Nagano, 1988) **Red** = Data from the present study (Nottrott *et al*, 2010)

Natural convection mode

- In natural convection temperature waveforms are periodic
- Frequency of signal is related to the scale of structures in the boundary layer

Forced convection mode

- Upward gust of wind caused transition from natural to forced convection
- In forced convection waveforms are spiky and random

Conclusions

- Holistic urban energy models must combine energy balance calculations with CFD
- Simplified convection models (wall functions) are used to estimate surface fluxes
- Accurate wall function parameterizations are difficult in urban environments where complex geometries and flow patterns exist

Acknowledgements

- I would like to acknowledge:
- My collaborators at the Tokyo Institute of Technology
 - Professor Manabu Kanda and Professor Atsushi Inagaki
 - Shiho Onomura, Hiroshi Takimoto, Makoto Nakayoshi,
 Hideaki Kumemura and Takuya Makabe
- My advisor at UCSD, Professor Jan Kleissl
- Funding was provided by JSPS and NSF through and EAPSI fellowship

